Bellwork
 03/12/2012

Describe each arc as a minor arc, major arc, or semicircle.
Find the arc measure.

1. $\overparen{B C} M$ inor
2. $\overparen{C B E}$ Major
3. $\overparen{B C E}$ Semi
4. Is $\widehat{\mathrm{AE}} \cong \widehat{\mathrm{BC}}$?

Yes!

Geometry
 10.3 Properties of Chords
 Standard(s): 3, 4

Vocabulary:

THEOREM

For Your Notebook

THEOREM 10.3

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

Proof: Exs. 27-28, p. 669

$$
\widehat{A B} \cong \widehat{C D} \text { if and only if } \overline{A B} \cong \overline{C D} .
$$

THEOREMS

For Your Notebook

Theorem 10.4

If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.

If $\overline{Q S}$ is a perpendicular bisector of $\overline{T R}$, then $\overline{Q S}$ is a diameter of the circle.

Proof: Ex. 31, p. 670

Theorem 10.5

If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

If $\overline{E G}$ is a diameter and $\overline{E G} \perp \overline{D F}$, then $\overline{H D} \cong \overline{H F}$ and $\overparen{G D} \cong \overparen{G F}$.

Proof: Ex. 32, p. 670

THEOREM

For Your Notebook

Theorem 10.6

In the same circle, or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

Proof: Ex. 33, p. 670

$\overline{A B} \cong \overline{C D}$ if and only if $E F=E G$.

$A B=9$

Find the Value of x
Find the value of x.

Identify the Diameter
Tell whether $\overline{\mathrm{PR}}$ is the diameter of the circle. Explain.

No, $\overline{Q S}$ does not
bisect $\overline{P R}$.

+ bisects

Homework Assignment

Worksheet 10.3B

