

Lesson 12.1 GCF's
What You Need to Know:
A greatest common factor is the product of all the common factors.
To find the GCF of a polynomial, find what each term has in common.
The GCF of 7x ³ -63x is 7x.
If the first term of the polynomial (in standard form) is negative, the GCF should be negative because we never want a polynomial that starts with a negative. Boo!
Once you find the GCF, write it outside of the simplified polynomiallike <i>reverse distribution</i> .
7x³-63x simplified is 7x(x²-9)

GCF's Write the polynomial in simplest form by finding the GCF. $3w^3$ -75w 24y³+32y $3a^{2}+30$ $-7t^{5}-14t^{4}+7t^{3}$ $2x^{3}+12x^{2}+18x$

Homework Assignment Worksheet "GCF's"

Lesson 12.2 x²+bx+c
What You Need to Know:
Tips for Signs: x^2+bx+c $(+)(+)$ x^2-bx+c $(-)(-)$ x^2+bx-c $(-)(+)$ or $(+)(-)$ x^2-bx-c $(-)(+)$ or $(+)(-)$
In Order to Factor: 1. Standard Form? 2. Reduced (Distributive)? 3. Write as a product (Reverse Foil)!
 How to Factor x²+bx+c: 1. Factor the first term. 2. Factor the last term. 3. Find factors of the last term that add (or subtract) to give middle term.

Lesson 12.4

>	∠+bx+c
Factor the trinomial.	
x ² +6x+5	
x ² -7x+12	
x ² -4x-12	
x ² +3x-28	
x ² +15x+56	

Worksheet "Factoring x²+bx+c"

	ax²+bx+c
Factor the trinomial.	
5x ² +11x+2	
2x ² +5x+3	
9x ² +65x+14	
6x²-23x+15	
8x ² +38x+9	

Worksheet "Factoring ax²+bx+c"

Special Product Patterns Factor the expression. Simplify first, if necessary! $\int m^2 - 9$ (m + 3)(m - 3) 49q²-81 $(7q+9)(7q-9) = \frac{2x^2+6x}{2x}$ 12-27x² - <u>Jr</u> + 13 $-3(9_{x}^{2}-4)$ $-3(3_{x}+3)(3_{x}-3)$ x²-8x+16 $(X - Y)^{a}$ -4x.2=-8x $\int 9y^{2} + 60y + 100$ $(3y + 10)^{3}$ $2x^{2}$ -12x+18 2 $\frac{2x^2}{2} + \frac{-12x}{2} + \frac{18}{2}$ $2(1x^{2}-6x+9)$ $2(x-3)^{2}$

Homework Assignment Worksheet "Special Product Patterns"

