Factoring Polynomials

In This Unit:

1. GCF's (Greatest Common Factor)
2. $x \frac{1}{2} b x+c$
3. $a x+b x+c$
4. Special Product Patterns

Bellwork

3/20/12
Divide the polynomials.

$$
\begin{aligned}
& \text { 1. } \frac{-12 x^{4}+9 x^{2}-27 x}{-3 x} \\
& -\frac{12 x^{4}}{-3 x^{1}}+\frac{9 x^{2}}{-3 x^{1}}+\frac{-27 x^{1}}{-3 x^{1}} \\
& 4 x^{3}-3 x^{1}+9
\end{aligned}
$$

Lesson 12.1

What You Need to Know:

A greatest common factor is the product of all the common factors.

To find the GCF of a polynomial, find what each term has in common.

The GCF of $7 x^{3}-63 x$ is $7 x$.

If the first term of the polynomial (in standard form) is negative, the GCF should be negative because we never want a polynomial that starts with a negative. Boo!

Once you find the GCF, write it outside of the simplified polynomial...like reverse distribution.
$7 x^{3}-63 x$ simplified is $7 x\left(x^{2}-9\right)$

Write the polynomial in simplest form by finding the GCF. $3 w^{3}-75 w$
$24 y^{3}+32 y$
$2 x^{3}+12 x^{2}+18 x$
$3 a^{2}+30$
$-7 t^{5}-14 t^{4}+7 t^{3}$

Homework Assignment

Worksheet
 "GCF's"

Bellwork 03/21/12

Write the polynomial in simplest form by finding the GCF.

1. $-8 \mathrm{k}^{4}+16 \mathrm{k}^{3}-64 \mathrm{k}^{2}$

_esson 12.2

What You Need to Know:

Tips for Signs:

$$
\begin{array}{ll}
x^{2}+b x+c & (+)(+) \\
x^{2}-b x+c & (-)(-) \\
x^{2}+b x-c & (-)(+) \text { or }(+)(-) \\
x^{2}-b x-c & (-)(+) \text { or }(+)(-)
\end{array}
$$

In Order to Factor:
1.
2.
3.

Standard Form?
Reduced (Distributive)?
Write as a product (Reverse Foil)!

How to Factor $\mathbf{x}^{2}+\mathrm{bx}+\mathrm{c}$:

1. Factor the first term.
2. Factor the last term.
3. Find factors of the last term that add (or subtract) to give middle term.

Factor the trinomial. $x^{2}+5 x+6$
$x^{2}+6 x+5$
$x^{2}+15 x+56$
$x^{2}-7 x+12$
$x^{2}+3 x-28$
$x^{2}-4 x-12$

Homework Assignment

Worksheet "Factoring $\mathbf{x}^{2}+b x+c$ "

Bellwork 03/26/12

Factor the polynomial.

$$
\text { 1. } 4 x^{4}+36 x^{3}+32 x^{2}
$$

Lesson 12.3

What You Need to Know:

How to Factor $a x^{2}+b x+c$:

1. Factor the first term.
2. Factor the last term.
3. Find a combination of the factors of the 1st and last term that multiply and + (or -) to give the middle term.

It's trial and error! When in doubt, try any of the factors!

If the order you choose doesn't work, try this:

1. Switch the signs
2. Switch the order of the numbers
3. Try a different set of factors

Factor the trinomial.

$$
5 x^{2}+11 x+2
$$

$2 x^{2}+5 x+3$

$9 x^{2}+65 x+14$

$6 x^{2}-23 x+15$

$8 x^{2}+38 x+9$

Homework Assignment

Worksheet "Factoring ax²+bx+c"

Bellwork 03/28/12

Write the polynomial in simplest form by finding the GCF.

1. $-8 k^{4}+16 k^{3}-64 k^{2}$

Bellwork 03/28/12

Factor.

$$
\underbrace{\frac{3}{11^{3}} \frac{3 x^{2}-23 x-8}{(3 x+1)(1 x-8)}}_{+1 x+-24 x=-23 x} \frac{\left.\frac{8}{1}\right|^{8}}{2}
$$

Lesson 12.4 Special Product Patterns

What You Need to Know:
Difference of Two Squares Pattern: $a^{2}-b^{2}=(a+b)(a-b)$

Perfect Square Trinomial Pattern: $a^{2}+2 a b+b^{2}=(a+b)^{2}$
$a^{2}-2 a b+b^{2}=(a-b)^{2}$

You still need to simplify, if possible!

$$
x \cdot x=x^{2}
$$

Special Product Patterns
$\sqrt{\text { Factor the expression: Simplify first, If necessary! }}$
$\sqrt{m^{2}-9}-9$
$(m+3)(m-3)$
$\sqrt{49} q^{2} \sqrt{81}$
$(7 q+9)(7 q-9) \quad \frac{2 x^{2}+6 x}{2 x}$
$12-27 x^{2}$
$-\frac{27 x^{2}}{3}+\frac{12}{-3}$
$-3\left(9 x^{2}-4\right)$
$-3(3 x+2)(3 x-2)$
$x^{2}-8 x+16$
$(x-4)^{2}$
V^{2}
$-4 x \cdot 2=-8 x$
$\sqrt{9 y} y^{2}+60 y+\sqrt{100}$
$(3 y+10)^{2}$
$2\left(\sqrt{x^{2}}-6 x+\sqrt{9}\right)$
$2(x-3)^{2}$
$\frac{2 x^{2}-12 x+18}{2}$
$\frac{2 x^{2}}{2}+\frac{12 x}{2}+\frac{18}{2}$

Homework Assignment

Worksheet "Special Product Patterns"

