Graphing Linear Equations

In This Unit:

- 1. Slope-Intercept Form
- 2. Special Lines
- 3. Intercepts

No Bellwork 01/20/2012	

Lesson 4.1 Slope-Intercept Form

What You Need to Know:

Slope-Intercept Form: y=mx+b, where m is slope and b is the y-intercept

Don't worry! You've already learned to write equations in slope-intercept form!! When you solve a formula for y, that's writing it in this form.

Always write an equation in slope-intercept form before you graph.

You always need the <u>SLOPE</u> and <u>Y-INTERCEPT</u> in order to graph.

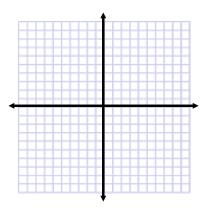
Slope-Intercept Form

Write the equation in slope-intercept form. Then tell the slope and the y-intercept.

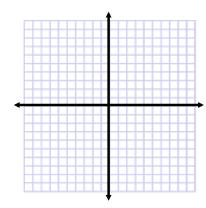
$$-x+y=6$$

$$-2x+y=-4$$

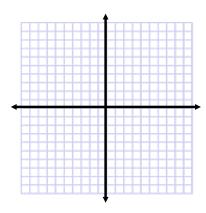
$$3x-y=1$$


$$4x+2y=1$$

$$-9x+3y=-6$$


Slope-Intercept Form Cont.

Graph the equation. If necessary, write the equation in slope-intercept form first.


$$y = -3x + 5$$

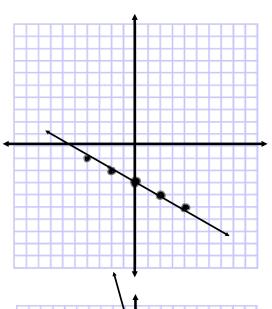
$$x+4y=4$$

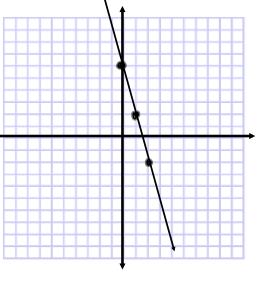
$$x+3y-6=0$$

Homework Assignment

Worksheet
"Graphing Slope-Intercept Form"

Bellwork 01/23/2012


Write the equation in slope-intercept form. Then graph the line.


1.
$$-2x-4y=12$$

 $+2x + 2x$
 $-4y = 2x + 12$
 $-4y = 2x + 12$
 $-4y = 2x + 12$

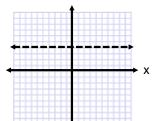
$$b = -\frac{3}{2}$$

 $b = -\frac{3}{2}$

2.
$$2x + \frac{1}{2}y = 3$$

$$y = -4x + 6$$
 $M = -\frac{4}{7}$
 $b = 6$

Lesson 4.2 Special Lines


What You Need to Know:

There are two types of special lines: Horizontal Vertical

These lines are special because they have only ONE variable!

Think of it like this:


Which axis does a horizontal line cross?

So write a horizontal line as y=...

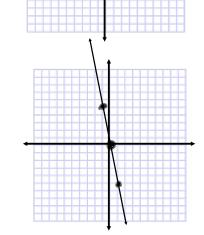
NOTE: horizontal lines have slope=0!

Which axis does a vertical line cross?

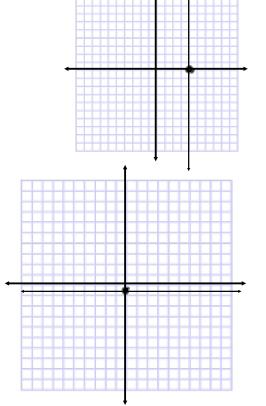
So write a vertical line as x=...

NOTE: vertical lines have slope= \emptyset !

Special Lines


Tell whether the line is horizontal, vertical, or neither. Then graph

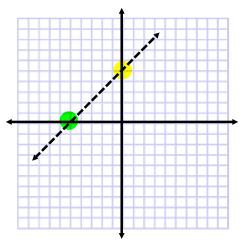
Horizontal


$$y = mx + b$$

 $y = -5x + 0$
 $m = -\frac{5}{1}$
 $b = 0$

$$M = -\frac{5}{1}$$

horizontal



Lesson 4.3 Intercepts, Zeros, Solutions

What You Need to Know:

What are intercepts?

Points where the line crosses the x and y-axis!

Here's how to find them:

x-intercept
Plug 0 in for y!

(,0)

X, y

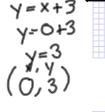
y-intercept
Plug 0 in for x!

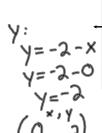
(0,)

X, y

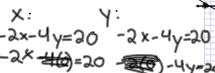
When using intercepts, you DON'T have to change the equation to slope-intercept form!

Now you know two ways of graphing:


- 1. Slope-Intercept Form
- 2. Using Intercepts


Intercepts, Zeros, Solutions

Find the intercepts [zeros] of the line. Then graph the equation.


y=x+3

$$y: y = x + 3$$

 $y = 0 + 3$
 $y = 3$
 $(0,3)$

$$\frac{-3x}{3} = \frac{30}{20}$$

$$(-10,0)$$

Homework Assignment

Worksheet
"Special Lines and Intercepts"

