Writing Linear Equations

In This Unit:

- 1. Given slope and y-intercept
- 2. Given slope and a point
- 3. Given two points
- 4. Parallel and perpendicular lines

No Bellwork 01/26/2012		

Lesson 5.1 Given Slope and y-Intercept

What You Need to Know:

Slope-Intercept Form: y=mx+b, where m is slope and b is the y-intercept

REMEMBER: the slope ALWAYS comes before the x!

Given Slope and y-Intercept

Write an equation of the line in slope-intercept form.

Slope is -2, y-intercept is 5

$$M=-2$$
 $b=5$

$$y = -2x + 5$$

Slope is 1, y-intercept is -4

$$y = 1x + (-4)$$

 $y = x + (-4)$

Slope is 4, y-intercept is 0

Slope is 0, y-intercept is 2

A car charges a flat fee of \$40 and an additional \$.20 per mile to rent an automobile. Write an equation to model the total charge C (in dollars) in terms of n, the number of miles driven. Complete the table using the equation.

$$C = 0.20n + 40$$

Miles (n)	50	100	200	300
Total (C)	50	60	80	100

Lesson 5.2 Given Slope and a Point

What You Need to Know:

To write an equation, you need SLOPE and y-INTERCEPT.

A point is not always the y-intercept!

Use point-slope form when given a point and slope.

Is there an echo here?

**Point-Slope Formula
$$y-y_1=m(x-x_1)$$
 when given $(x_1,y_1)^{**}$

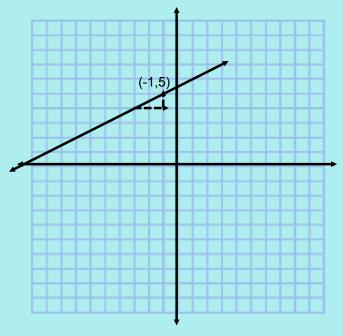
Remember: Slope is $\frac{Rise}{Run}$.

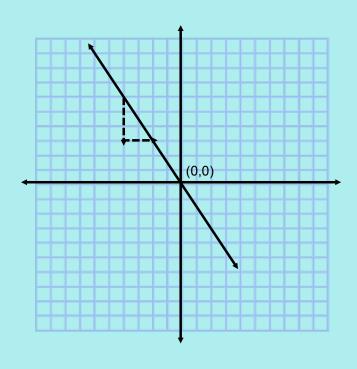
Given Slope and a Point

Write an equation of the line that passes through the point and has the given slope. $\gamma - \gamma = m(x - x_1)$

$$y-(-6)=-2(x-1)$$

 $y+b=-2x+2$
 $y=-2x+(-4)$
 $y=-2x+(-4)$
 $y=-2x+(-4)$
 $y=-2x+(-4)$


$$\gamma - \gamma_1 = m(x - x_1)$$


$$y - 3 = -1(x - 4)$$

 $y - 3 = -1x + 4$
 $y = -1x + 9$
(-3,0), m=2

$$y-0=2(x-(-3))$$

 $y-0=2(x+3)$
 $y=2x+1$

Given Slope and a Point Cont.

Write an equation of the line shown.

Homework Assignment

Worksheet
"Writing Equations Given Slope and a Point"

Given Two Points

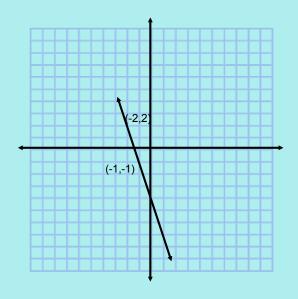
What You Need to Know:

To write an equation, you need _____and _____?

If you don't know the slope, you can find it using the slope formula!

You can use ANY of the two given points for the point-slope formula!

Point-Slope Formula: y-y1=m(x-x1) when given (x1,y1)

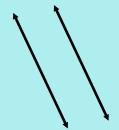

Remember: Slope is $\frac{Rise}{Run}$.

Given Two Points

Write an equation of the line that passes through the points.

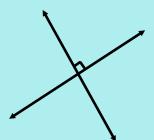
$$(0,7), (1,-1)$$

$$(-2,-3), (0,3)$$


Homework Assignment

Worksheet
"Writing Equations Given Two
Points"

Parallel and Perpendicular Lines


What You Need to Know:

Parallel Lines

Parallel lines NEVER intersect. Both lines have the SAME slope.

Perpendicular Lines

Perpendicular lines intersect at a right angle. The lines have OPPOSITE RECIPROCAL slope.

Perpendicular slopes are the opposite reciprocal of each other.

Example: $\frac{3}{4}$ becomes $-\frac{4}{3}$

Parallel and Perpendicular Lines

Write an equation of the line parallel to the given line and passes through the given point.

$$y=4x-1, (2,3)$$

$$y=x+6, (-3,0)$$

$$y=-2x+3, (1,-1)$$

Parallel and Perpendicular Lines Cont.

Write an equation of the line perpendicular to the given line and passes through the given point.

$$y=2x-1, (2,4)$$

$$y=-\frac{1}{3}x+2$$
, (5,1)

$$y=-4x+5, (4,3)$$

Homework Assignment

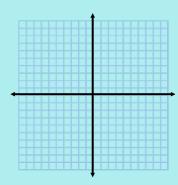
Worksheet
"Writing Equations for Parallel and
Perpendicular Lines"

Best-Fit Lines

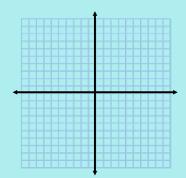
What You Need to Know:

To find the best-fit line:

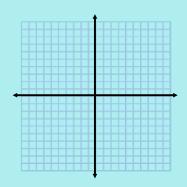
- 1. Plot the points.
- 2. Draw a line through the middle of the points.
- 3. Pick any two points ON the line.
- 4. Find the slope using the two points.
- 5. Write the equation using point-slope form.


Point-Slope Formula: y-y1=m(x-x1) when given (x1,y1)

Remember: Slope is $\frac{y^2-y^1}{x^2-x^1}$.


Best-Fit Lines

Write an equation of the line that passes through the points.


X	у
1	3
2	5
3	8
4	9
5	11
6	12

X	y
1	7
2	0
3	1
4	0
5	7
6	6

X	у	
0	0.8	
1.1	2.2	
1.9	2.9	
2.5	3.6	
3.1	4.0	
4.3	5.3	

Homework Assignment

Worksheet
"Best-Fit Lines"

Lesson 5.1 & 5.2	January 26, 2012