Bellwork
 02/14/2012

1. Find the length of $\overline{B C}$ with endpoints $B(-3,5)$ and C (1,2).

$$
\begin{array}{ll}
\sqrt{(1+(+3))^{2}+(2-5)^{2}} & \sqrt{25} \\
\sqrt{4^{2}+(-3)^{2}} & B C=5 \\
\sqrt{16+9} &
\end{array}
$$

 are the coordinates of the image?

$$
\begin{aligned}
(x, y) \rightarrow & (x+4, y-2) \\
& (3+4,5-2) \\
& (7,3)
\end{aligned}
$$

Geometry

9.1 Translate Figures and Vectors

Standard(s): 3, 10

Vocabulary:

Image: A new figure created by transforming an original figure. (final Product)

Preimage: The original figure before transformation.

Isometry: A transformation that preserves length and angle measure.

Vector: A quantity that has both direction and magnitude (or size).

THEOREM	For Your Notebook
THEOREM 9.1 Translation Theorem	
A translation is an isometry.	
Proof: below; Ex. 46, p. 579	A_{C} CABC $\simeq \triangle A^{\prime} B^{\prime} C^{\prime}$

KEY CONCEPT

For Your Notebook

Vectors

The diagram shows a vector named $\overrightarrow{F G}$, read as "vector $F G$."

The initial point, or starting point, of the vector is F.

horizontal component
 The terminal point, or ending point, of the vector is G.
vertical component

The component form of a vector combines the horizontal and vertical components. So, the component form of $\overrightarrow{F G}$ is $\langle 5,3\rangle$.

USE NOTATION
Use brackets to write the component form of the vector $\langle r, s\rangle$. Use parentheses to write the coordinates of the point (p, q).

Image and Preimage
Use the translation $(x, y) \rightarrow(x+2, y-5)$.
What is the image of $D(4,7)$?

$$
\begin{gathered}
(x, y) \rightarrow(4+2,7-5) \\
D^{\prime}(6,2)
\end{gathered}
$$

What is the image of $E(-3,2)$?

$$
(x, y) \rightarrow(-3+2,2-5)
$$

What is the preimage of $M(-5,3)$? $(x, y) \rightarrow(x+2, y-5)$ change

$$
(-5-2,3+5) \quad(x-2, y+5)
$$

signs in

$$
M(-7,8)
$$

notation! (-9., ii)?

$$
\begin{aligned}
& (-9-2,-11+5) \\
& N(-11,-6)
\end{aligned}
$$

Graphing an Image and Writing a Rule
The vertices of $\triangle M N O$ are $M(-2,4), N(-1,1)$, and $O(3,3)$.Graph the image of the triangle using prime notation.

Final image

$$
(x, y) \rightarrow(x+4, y+2)
$$

$$
\begin{aligned}
& \mathrm{M}^{\prime}(2,6) \\
& \mathrm{N}^{\prime}(3,3) \\
& \mathrm{O}^{\prime}(7,5)
\end{aligned}
$$

$\Delta R ' S ' T$ ' is the image of $\Delta R S T$ after a translation. Write a rule for the translation. Then verify that the translation is an isometry.

Find the difference starting with the prime notation!

Use distance form.

$$
\mathrm{RS}=
$$

$$
\mathrm{ST}=
$$

$$
\mathrm{RT}=
$$

R'S'=

$$
\begin{aligned}
& R(-4,-1) \quad R^{\prime}(1,1) \\
& S(-3,3) \quad S^{\prime}(2,5) \\
& T(0,2) \xrightarrow{T^{\prime}(5,4)} \\
& R^{\prime}(1,1), R(-4,-1) \\
& 1+(+4), 1+(+1) \\
& \begin{array}{l}
S^{\prime} T^{\prime}=\frac{5,2}{(x, y)=(x+5, y+2)} \\
R^{\prime} T^{\prime}=(x)
\end{array}
\end{aligned}
$$

Identifying Vectors
Name the vector and write its component form.

$\overrightarrow{A B}$

$$
\langle 10,-2\rangle
$$

$\overrightarrow{C D}$

Use the point S(-3,2). Find the component form of the vector that describes the translation to S^{\prime}.

$$
\begin{aligned}
& \underbrace{\underbrace{\prime}(-7), S(-3,2)}_{9+(+3),-7-2} \\
& \langle 12,-9\rangle
\end{aligned}
$$

$-11+(+3), 13-2$

Translating a Triangle

The vertices of $\triangle A B C$ are $A(-1,2), B(2,3)$, and $C(4,-1)$. Translate $\triangle A B C$ using the given vector. Graph $\triangle A B C$ and its image.

$\langle 2,-3\rangle$

Homework Assignment

Worksheet 9.1B

