Bellwork 03/02/2012

Simplify, if possible.

$$
\begin{aligned}
& \text { 1. }\left(r^{3} s^{7} t^{5}\right)^{3}\left(s^{2} t\right)^{5} \\
& r^{9} \cdot s^{21} \cdot t^{15} \cdot s^{10} \cdot t^{5} \\
& r^{9} s^{31} t^{20} \\
& \text { 2. } \quad\left(\frac{1}{2} \cdot x\right)^{3} \\
& \left(\frac{1}{2}\right)^{3} x^{3} \\
& \frac{1}{8} x^{3}
\end{aligned}
$$

Lesson 9.2
 Zero and Negative Properties

What You Need to Know:

Zero Power Property: $a^{0}=1, a \neq 0$
**Anything to the zero power is equal to **
Negative Power Property: $a^{-n}=\frac{1}{a^{n}}, a \neq 0$
To get rid of a negative exponent, move it to the opposite pole (north or south).
Zero \& Negative Properties
Write the expression without negative or zero exponents.

$$
\frac{3^{-4}}{1}=\frac{1}{3^{4}}=\frac{1}{81}
$$

$$
\frac{4^{-y}}{1} \frac{1}{4^{y}}
$$

$$
\frac{0^{-1}}{1}=\frac{1}{0^{\prime}}=\frac{1}{0} \quad \text { Undefined }
$$

$$
\frac{1}{6^{-1}}=\frac{6^{\prime}}{1}=6^{\prime}=6
$$

$$
\left(\frac{3}{5}\right)^{-1}
$$

$$
\frac{3^{-1}}{5^{-1}}=\frac{5^{1}}{3^{1}}=\frac{5}{3}
$$

$$
(-5.2)^{0}=1
$$

-5.2^{0}
$-1.5 .2^{\circ}$
-1.1
-1

Zero \& Negative Properties

Use the zero and negative properties to simplify the expression.
$(7)^{0} x^{2}$
$5 g^{-3} * h^{-4}$
$4\left(3^{-k}\right)$
$(4 y)^{-3}$

g

Homework Assignment
Worksheet "Zero \& Negative Properties of Exponents"
3. $\left(\begin{array}{l} \left(\frac{b^{10}}{b^{3}}\right)^{-2} \\ \frac{b^{-20}}{b^{-6}} \\ \frac{b^{6}}{b^{26}} \\ \frac{b^{6-20}}{1} \\ \frac{1}{b^{14}} \end{array}\right.$
$\begin{aligned} & \left(\frac{7 x^{-2} y}{x^{8} y^{-5}}\right)^{3} \\ & \frac{7^{3} x^{-6} y^{3}}{x^{24} y^{-15}} \\ & \frac{7^{3} y^{3} \cdot y^{15}}{x^{24} \cdot x^{6}} \\ & \frac{7^{3} y^{18}}{x^{30}} \rightarrow \frac{343 y^{18}}{x^{30}} \end{aligned}$
$\begin{aligned} \frac{\left(2 a^{2} b\right)^{3}}{\left(2 a b^{3}\right)^{2}}= & \frac{2^{3} a^{6} b^{3}}{2^{2} a^{2} b^{6}} \\ & 2^{3-2} a^{6-2} b^{3-6} \\ & 2^{1} a^{4} b^{-3} \\ & \frac{2 a^{4}}{b^{3}} \end{aligned}$

