Bellwork 02/23/2012

1. Subtract.

$$
\left[\begin{array}{rr}
8 & -2 \\
-3 & 5
\end{array}\right]+\left[\begin{array}{cc}
4 & -3 \\
-1 & +7
\end{array}\right]=\left[\begin{array}{cc}
4 & -5 \\
-4 & 12
\end{array}\right]
$$

2. Multiply.

$$
\begin{array}{ll}
{\left[\begin{array}{cc}
2 & -5 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
6 & -1 \\
3 & -2
\end{array}\right]} & \\
\begin{array}{cc}
(6)+-5(3) & 2(-1)+-5(-2) \\
12+-15 & -2+10 \\
1(6)+0(3) & 1(-1)+0(-2) \\
6+0 & -1+0
\end{array}
\end{array}
$$

Geometry
 9.3 Perform Reflections Standard(s): 3

Vocabulary:

Line of Reflection: When a transformation uses a line like a mirror to reflect an image.

THEOREM

 For Your NotebookTheorem 9.2 Reflection Theorem
A reflection is an isometry.

Proof: Exc. 35-38, p. 595
$\triangle A B C \simeq \triangle A^{\prime} B^{\prime} C^{\prime}$

KEY CONCEPT

For Your Notebook

$(2,3)$
Coordinate Rules for Reflections
x, y

- If (a, b) is reflected in the x-axis, its image is the point $(a,-b)$.
- If (a, b) is reflected in the y-axis, its image is the point $(-a, b)$.
- If (a, b) is reflected in the line $y=x$, its image is the point (b, a).
- If (a, b) is reflected in the line $y=-x$, its image is the point $(-b,-a)$.

KEY CONCEPT

For Your Notebook

Reflection Matrices

Reflection in the x-axis
$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$

Reflection in the y-axis

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

polygon matrix

Graph Reflection in Horizontal and Vertical Lines

Graph a reflection of $\triangle \mathrm{ABC}$ with vertices $A(1,3), B(5,2)$, and C $(2,1)$. Graph the reflection described.

$$
y=4
$$

$$
y=x
$$

$$
A^{\prime}(3,1)
$$

$$
B^{\prime}(2,5)
$$

$$
C^{\prime}(1,2)
$$

$y=-x$
$A^{\prime}(-3,-1)$
$B^{\prime}(-2,-5)$
$C^{\prime}(-1,-2)$

Finding Image Matrices
Write a matrix for the polygon. Then find the image matrix that represents the polygon after a reflection in the given line.
y-axis

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
A & B & C \\
1 & 4 & 3 \\
2 & 2 & -2
\end{array}\right]} \\
& A^{\prime} \\
& B^{\prime}
\end{aligned} C^{\prime}, ~\left[\begin{array}{rrr}
-1 & -4 & -3 \\
2 & 2 & -2
\end{array}\right]
$$

x-axis

Two Reflections

The vertices of Δ FGH are $F(3,2), G(1,5)$, and $H(-1,2)$. Reflect $\Delta \mathrm{FGH}$ in the first line. Then reflect $\Delta \mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime}$ in the second line. Graph $\Delta \mathrm{F}^{\prime \prime} \mathrm{G}^{\prime \prime} \mathrm{H}^{\prime}$ and $\Delta \mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime}$.

In $\mathbf{y}=\mathbf{2}$, then $\mathrm{y}=-1$.

In $y=x$, then $x=-3$.
$F^{\prime}(2,3)$
$\mathrm{G}^{\prime}(5,1)$
$H^{\prime}(2,-1)$

Homework Assignment

Worksheet 9.3B

