\qquad
\qquad

Write an equation of the line. Make sure the final equation is in slope-intercept form ($\mathbf{y}=\mathrm{mx}+\mathrm{b}$)!

1. slope $=-3, y-$ intercept $=-5$
2. slope $=-5, y-$ intercept $=-4$
3. slope $=\frac{5}{8}, y-$ intercept $=0$
4. slope $=-\frac{3}{5}, y-$ intercept $=3$
5. slope $=\frac{8}{9}, y-$ intercept $=\frac{1}{2}$
6. slope $=0, y-$ intercept $=9$

Write an equation of the line that passes through the point and has the given slope. Make sure the final equation is in slope-intercept form ($\mathbf{y}=\mathrm{mx}+\mathrm{b}$)!
7. $(0,2), m=1$
8. $(-3,0), m=4$
9. $(-3,9), m=8$
10. $(4,5), m=-1$
11. $(7,-7), m=-3$
12. $(5,-10), m=\frac{1}{5}$
13. Doubling a child's height on his or her second birthday gives a close estimate of his or her final adult height. Write a linear model that gives the approximate adult height of a two-year old in terms of his or her current height.

Equation: \qquad
14. Use the equation from \#13 to complete the table below.

Height at 2 Years Old, x	31	34	36	37.5
Adult Height, y				

